Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 227(1)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38469622

RESUMEN

Design randomizations and spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments, but precisely measuring spatial heterogeneity in the field remains a challenge. To this end, our study evaluated approaches to improve spatial modeling using high-throughput phenotypes (HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index was measured by a multispectral MicaSense camera and processed using ImageBreed. Contrasting to baseline agronomic trait spatial correction and a baseline multitrait model, a two-stage approach was proposed. Using longitudinal normalized difference vegetation index data, plot level permanent environment effects estimated spatial patterns in the field throughout the growing season. Normalized difference vegetation index permanent environment were separated from additive genetic effects using 2D spline, separable autoregressive models, or random regression models. The Permanent environment were leveraged within agronomic trait genomic best linear unbiased prediction either modeling an empirical covariance for random effects, or by modeling fixed effects as an average of permanent environment across time or split among three growth phases. Modeling approaches were tested using simulation data and Genomes-to-Fields hybrid maize (Zea mays L.) field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear height. The two-stage approach improved heritability, model fit, and genotypic effect estimation compared to baseline models. Electrical conductance and elevation from a 2019 soil survey significantly improved model fit, while 2D spline permanent environment were most strongly correlated with the soil parameters. Simulation of field effects demonstrated improved specificity for random regression models. In summary, the use of longitudinal normalized difference vegetation index measurements increased experimental accuracy and understanding of field spatio-temporal heterogeneity.


Asunto(s)
Zea mays , Zea mays/genética , Fenotipo , Modelos Genéticos , Análisis Espacio-Temporal , Genoma de Planta , Genómica/métodos , Genotipo , Carácter Cuantitativo Heredable
2.
BMC Res Notes ; 16(1): 219, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710302

RESUMEN

OBJECTIVES: This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available. DATA DESCRIPTION: The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.


Asunto(s)
Asignación de Recursos , Zea mays , Zea mays/genética , Estaciones del Año , Genotipo , Alemania
3.
Plant Genome ; 16(4): e20370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37539632

RESUMEN

Selection for more nutritious crop plants is an important goal of plant breeding to improve food quality and contribute to human health outcomes. While there are efforts to integrate genomic prediction to accelerate breeding progress, an ongoing challenge is identifying strategies to improve accuracy when predicting within biparental populations in breeding programs. We tested multiple genomic prediction methods for 12 seed fatty acid content traits in oat (Avena sativa L.), as unsaturated fatty acids are a key nutritional trait in oat. Using two well-characterized oat germplasm panels and other biparental families as training populations, we predicted family mean and individual values within families. Genomic prediction of family mean exceeded a mean accuracy of 0.40 and 0.80 using an unrelated and related germplasm panel, respectively, where the related germplasm panel outperformed prediction based on phenotypic means (0.54). Within family prediction accuracy was more variable: training on the related germplasm had higher accuracy than the unrelated panel (0.14-0.16 and 0.05-0.07, respectively), but variability between families was not easily predicted by parent relatedness, segregation of a locus detected by a genome-wide association study in the panel, or other characteristics. When using other families as training populations, prediction accuracies were comparable to the related germplasm panel (0.11-0.23), and families that had half-sib families in the training set had higher prediction accuracy than those that did not. Overall, this work provides an example of genomic prediction of family means and within biparental families for an important nutritional trait and suggests that using related germplasm panels as training populations can be effective.


Asunto(s)
Avena , Estudio de Asociación del Genoma Completo , Avena/genética , Genómica , Fitomejoramiento/métodos , Semillas/genética
4.
Curr Opin Biotechnol ; 83: 102968, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37515935

RESUMEN

Over the last decades, significant strides were made in understanding the biochemical factors influencing the nutritional content and flavor profile of fruits and vegetables. Product differentiation in the produce aisle is the natural consequence of increasing consumer power in the food industry. Cotton-candy grapes, specialty tomatoes, and pineapple-flavored white strawberries provide a few examples. Given the increased demand for flavorful varieties, and pressing need to reduce micronutrient malnutrition, we expect breeding to increase its prioritization toward these traits. Reaching this goal will, in part, necessitate knowledge of the genetic architecture controlling these traits, as well as the development of breeding methods that maximize their genetic gain. Can artificial intelligence (AI) help predict flavor preferences, and can such insights be leveraged by breeding programs? In this Perspective, we outline both the opportunities and challenges for the development of more flavorful and nutritious crops, and how AI can support these breeding initiatives.


Asunto(s)
Inteligencia Artificial , Fitomejoramiento , Productos Agrícolas/genética , Fenotipo , Aprendizaje Automático
5.
BMC Res Notes ; 16(1): 148, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461058

RESUMEN

OBJECTIVES: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data. DATA DESCRIPTION: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022. Also, soil, weather, environmental covariates data and metadata information for all environments (combination of year and location). Competitors also had access to ReadMe files which described all the files provided. The Maize GxE is a collaborative project and all the data generated becomes publicly available [2]. The dataset used in the 2022 Prediction Competition was curated and lightly filtered for quality and to ensure naming uniformity across years.


Asunto(s)
Genoma de Planta , Zea mays , Fenotipo , Zea mays/genética , Genotipo , Genoma de Planta/genética , Grano Comestible/genética
6.
Plant Genome ; : e20286, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575809

RESUMEN

Tocochromanols (vitamin E) are an essential part of the human diet. Plant products, including maize (Zea mays L.) grain, are the major dietary source of tocochromanols; therefore, breeding maize with higher vitamin content (biofortification) could improve human nutrition. Incorporating exotic germplasm in maize breeding for trait improvement including biofortification is a promising approach and an important research topic. However, information about genomic prediction of exotic-derived lines using available training data from adapted germplasm is limited. In this study, genomic prediction was systematically investigated for nine tocochromanol traits within both an adapted (Ames Diversity Panel [AP]) and an exotic-derived (Backcrossed Germplasm Enhancement of Maize [BGEM]) maize population. Although prediction accuracies up to 0.79 were achieved using genomic best linear unbiased prediction (gBLUP) when predicting within each population, genomic prediction of BGEM based on an AP training set resulted in low prediction accuracies. Optimal training population (OTP) design methods fast and unique representative subset selection (FURS), maximization of connectedness and diversity (MaxCD), and partitioning around medoids (PAM) were adapted for inbreds and, along with the methods mean coefficient of determination (CDmean) and mean prediction error variance (PEVmean), often improved prediction accuracies compared with random training sets of the same size. When applied to the combined population, OTP designs enabled successful prediction of the rest of the exotic-derived population. Our findings highlight the importance of leveraging genotype data in training set design to efficiently incorporate new exotic germplasm into a plant breeding program.

7.
Plant Genome ; : e20276, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36321716

RESUMEN

With an essential role in human health, tocochromanols are mostly obtained by consuming seed oils; however, the vitamin E content of the most abundant tocochromanols in maize (Zea mays L.) grain is low. Several large-effect genes with cis-acting variants affecting messenger RNA (mRNA) expression are mostly responsible for tocochromanol variation in maize grain, with other relevant associated quantitative trait loci (QTL) yet to be fully resolved. Leveraging existing genomic and transcriptomic information for maize inbreds could improve prediction when selecting for higher vitamin E content. Here, we first evaluated a multikernel genomic best linear unbiased prediction (MK-GBLUP) approach for modeling known QTL in the prediction of nine tocochromanol grain phenotypes (12-21 QTL per trait) within and between two panels of 1,462 and 242 maize inbred lines. On average, MK-GBLUP models improved predictive abilities by 7.0-13.6% when compared with GBLUP. In a second approach with a subset of 545 lines from the larger panel, the highest average improvement in predictive ability relative to GBLUP was achieved with a multi-trait GBLUP model (15.4%) that had a tocochromanol phenotype and transcript abundances in developing grain for a few large-effect candidate causal genes (1-3 genes per trait) as multiple response variables. Taken together, our study illustrates the enhancement of prediction models when informed by existing biological knowledge pertaining to QTL and candidate causal genes.

8.
Front Plant Sci ; 13: 990250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426140

RESUMEN

The cassava starch market is promising in sub-Saharan Africa and increasing rapidly due to the numerous uses of starch in food industries. More accurate, high-throughput, and cost-effective phenotyping approaches could hasten the development of cassava varieties with high starch content to meet the growing market demand. This study investigated the effectiveness of a pocket-sized SCiO™ molecular sensor (SCiO) (740-1070 nm) to predict starch content in freshly ground cassava roots. A set of 344 unique genotypes from 11 field trials were evaluated. The predictive ability of individual trials was compared using partial least squares regression (PLSR). The 11 trials were aggregated to capture more variability, and the performance of the combined data was evaluated using two additional algorithms, random forest (RF) and support vector machine (SVM). The effect of pretreatment on model performance was examined. The predictive ability of SCiO was compared to that of two commercially available near-infrared (NIR) spectrometers, the portable ASD QualitySpec® Trek (QST) (350-2500 nm) and the benchtop FOSS XDS Rapid Content™ Analyzer (BT) (400-2490 nm). The heritability of NIR spectra was investigated, and important spectral wavelengths were identified. Model performance varied across trials and was related to the amount of genetic diversity captured in the trial. Regardless of the chemometric approach, a satisfactory and consistent estimate of starch content was obtained across pretreatments with the SCiO (correlation between the predicted and the observed test set, (R2 P): 0.84-0.90; ratio of performance deviation (RPD): 2.49-3.11, ratio of performance to interquartile distance (RPIQ): 3.24-4.08, concordance correlation coefficient (CCC): 0.91-0.94). While PLSR and SVM showed comparable prediction abilities, the RF model yielded the lowest performance. The heritability of the 331 NIRS spectra varied across trials and spectral regions but was highest (H2 > 0.5) between 871-1070 nm in most trials. Important wavelengths corresponding to absorption bands associated with starch and water were identified from 815 to 980 nm. Despite its limited spectral range, SCiO provided satisfactory prediction, as did BT, whereas QST showed less optimal calibration models. The SCiO spectrometer may be a cost-effective solution for phenotyping the starch content of fresh roots in resource-limited cassava breeding programs.

9.
Mol Plant Microbe Interact ; 35(11): 1018-1033, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35914305

RESUMEN

The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Phytophthora , Phytophthora/genética , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Capsicum/genética
10.
Genetics ; 221(4)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35666198

RESUMEN

Tocochromanols (tocopherols and tocotrienols, collectively vitamin E) are lipid-soluble antioxidants important for both plant fitness and human health. The main dietary sources of vitamin E are seed oils that often accumulate high levels of tocopherol isoforms with lower vitamin E activity. The tocochromanol biosynthetic pathway is conserved across plant species but an integrated view of the genes and mechanisms underlying natural variation of tocochromanol levels in seed of most cereal crops remains limited. To address this issue, we utilized the high mapping resolution of the maize Ames panel of ∼1,500 inbred lines scored with 12.2 million single-nucleotide polymorphisms to generate metabolomic (mature grain tocochromanols) and transcriptomic (developing grain) data sets for genetic mapping. By combining results from genome- and transcriptome-wide association studies, we identified a total of 13 candidate causal gene loci, including 5 that had not been previously associated with maize grain tocochromanols: 4 biosynthetic genes (arodeH2 paralog, dxs1, vte5, and vte7) and a plastid S-adenosyl methionine transporter (samt1). Expression quantitative trait locus (eQTL) mapping of these 13 gene loci revealed that they are predominantly regulated by cis-eQTL. Through a joint statistical analysis, we implicated cis-acting variants as responsible for colocalized eQTL and GWAS association signals. Our multiomics approach provided increased statistical power and mapping resolution to enable a detailed characterization of the genetic and regulatory architecture underlying tocochromanol accumulation in maize grain and provided insights for ongoing biofortification efforts to breed and/or engineer vitamin E and antioxidant levels in maize and other cereals.


Asunto(s)
Grano Comestible , Zea mays , Antioxidantes/metabolismo , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Humanos , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Tocoferoles/metabolismo , Vitamina E/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(23): e2113488119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639691

RESUMEN

The tocopherol biosynthetic pathway, encoded by VTE genes 1 through 6, is highly conserved in plants but most large effect quantitative trait loci for seed total tocopherols (totalT) lack VTE genes, indicating other activities are involved. A genome-wide association study of Arabidopsis seed tocopherols showed five of seven significant intervals lacked VTE genes, including the most significant, which mapped to an uncharacterized, seed-specific, envelope-localized, alpha/beta hydrolase with esterase activity, designated AtVTE7. Atvte7 null mutants decreased seed totalT 55% while a leaky allele of the maize ortholog, ZmVTE7, decreased kernel and leaf totalT 38% and 49%, respectively. Overexpressing AtVTE7 or ZmVTE7 partially or fully complemented the Atvte7 seed phenotype and increased leaf totalT by 3.6- and 6.9-fold, respectively. VTE7 has the characteristics of an esterase postulated to provide phytol from chlorophyll degradation for tocopherol synthesis, but bulk chlorophyll levels were unaffected in vte7 mutants and overexpressing lines. Instead, levels of specific chlorophyll biosynthetic intermediates containing partially reduced side chains were impacted and strongly correlated with totalT. These intermediates are generated by a membrane-associated biosynthetic complex containing protochlorophyllide reductase, chlorophyll synthase, geranylgeranyl reductase (GGR) and light harvesting-like 3 protein, all of which are required for both chlorophyll and tocopherol biosynthesis. We propose a model where VTE7 releases prenyl alcohols from chlorophyll biosynthetic intermediates, which are then converted to the corresponding diphosphates for tocopherol biosynthesis.


Asunto(s)
Arabidopsis , Hidrolasas , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/fisiología , Estudio de Asociación del Genoma Completo , Hidrolasas/metabolismo , Fitol/metabolismo , Fitomejoramiento , Plantas/genética , Plantas/metabolismo , Tocoferoles/metabolismo , Vitamina E/metabolismo
12.
Plant Physiol ; 189(4): 2144-2158, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512195

RESUMEN

The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed. Dissecting the genetic architecture of natural variation for maize (Zea mays L.) leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we performed an integrated genome- and transcriptome-wide association studies (GWAS and TWAS) to identify candidate genes putatively regulating variation in leaf gc. Of the 22 plausible candidate genes identified, 4 were predicted to be involved in cuticle precursor biosynthesis and export, 2 in cell wall modification, 9 in intracellular membrane trafficking, and 7 in the regulation of cuticle development. A gene encoding an INCREASED SALT TOLERANCE1-LIKE1 (ISTL1) protein putatively involved in intracellular protein and membrane trafficking was identified in GWAS and TWAS as the strongest candidate causal gene. A set of maize nested near-isogenic lines that harbor the ISTL1 genomic region from eight donor parents were evaluated for gc, confirming the association between gc and ISTL1 in a haplotype-based association analysis. The findings of this study provide insights into the role of regulatory variation in the development of the maize leaf cuticle and will ultimately assist breeders to develop drought-tolerant maize for target environments.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Hojas de la Planta/metabolismo , Transcriptoma , Ceras/metabolismo , Zea mays/metabolismo
13.
Plant Genome ; 15(2): e20205, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35470586

RESUMEN

Plant metabolites are important traits for plant breeders seeking to improve nutrition and agronomic performance yet integrating selection for metabolomic traits can be limited by phenotyping expense and degree of genetic characterization, especially of uncommon metabolites. As such, developing generalizable genomic selection methods based on biochemical pathway biology for metabolites that are transferable across plant populations would benefit plant breeding programs. We tested genomic prediction accuracy for >600 metabolites measured by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) in oat (Avena sativa L.) seed. Using a discovery germplasm panel, we conducted metabolite genome-wide association study (mGWAS) and selected loci to use in multikernel models that encompassed metabolome-wide mGWAS results or mGWAS from specific metabolite structures or biosynthetic pathways. Metabolite kernels developed from LC-MS metabolites in the discovery panel improved prediction accuracy of LC-MS metabolite traits in the validation panel consisting of more advanced breeding lines. No approach, however, improved prediction accuracy for GC-MS metabolites. We ranked model performance by metabolite and found that metabolites with similar polarity had consistent rankings of models. Overall, testing biological rationales for developing kernels for genomic prediction across populations contributes to developing frameworks for plant breeding for metabolite traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Espectrometría de Masas/métodos , Metabolómica/métodos
14.
G3 (Bethesda) ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385099

RESUMEN

Modern breeding methods integrate next-generation sequencing and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to (1) track breeding materials, (2) store experimental evaluations, (3) record phenotypic measurements using consistent ontologies, (4) store genotypic information, and (5) implement algorithms for analysis, prediction, and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/, last accessed 4/18/2022). Originally initiated as Cassavabase (https://cassavabase.org/, last accessed 4/18/2022) with the NextGen Cassava project (https://www.nextgencassava.org/, last accessed 4/18/2022), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/, last accessed 4/18/2022) and packaged in a Docker image for deployment (https://hub.docker.com/u/breedbase, last accessed 4/18/2022). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem.


Asunto(s)
Ecosistema , Fitomejoramiento , Algoritmos , Productos Agrícolas/genética , Programas Informáticos
15.
Plant Genome ; 15(2): e20197, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262278

RESUMEN

Sweet corn (Zea mays L.) is consistently one of the most highly consumed vegetables in the United States, providing a valuable opportunity to increase nutrient intake through biofortification. Significant variation for carotenoid (provitamin A, lutein, zeaxanthin) and tocochromanol (vitamin E, antioxidants) levels is present in temperate sweet corn germplasm, yet previous genome-wide association studies (GWAS) of these traits have been limited by low statistical power and mapping resolution. Here, we employed a high-quality transcriptomic dataset collected from fresh sweet corn kernels to conduct transcriptome-wide association studies (TWAS) and transcriptome prediction studies for 39 carotenoid and tocochromanol traits. In agreement with previous GWAS findings, TWAS detected significant associations for four causal genes, ß-carotene hydroxylase (crtRB1), lycopene epsilon cyclase (lcyE), γ-tocopherol methyltransferase (vte4), and homogentisate geranylgeranyltransferase (hggt1) on a transcriptome-wide level. Pathway-level analysis revealed additional associations for deoxy-xylulose synthase2 (dxs2), diphosphocytidyl methyl erythritol synthase2 (dmes2), cytidine methyl kinase1 (cmk1), and geranylgeranyl hydrogenase1 (ggh1), of which, dmes2, cmk1, and ggh1 have not previously been identified through maize association studies. Evaluation of prediction models incorporating genome-wide markers and transcriptome-wide abundances revealed a trait-dependent benefit to the inclusion of both genomic and transcriptomic data over solely genomic data, but both transcriptome- and genome-wide datasets outperformed a priori candidate gene-targeted prediction models for most traits. Altogether, this study represents an important step toward understanding the role of regulatory variation in the accumulation of vitamins in fresh sweet corn kernels.


Asunto(s)
Carotenoides , Estudio de Asociación del Genoma Completo , Transcriptoma , Verduras/genética , Zea mays/genética
16.
R Soc Open Sci ; 9(1): 211862, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35116168

RESUMEN

Understanding the factors driving ecological and evolutionary interactions of economically important plant species is important for agricultural sustainability. The geography of crop wild relatives, including wild potatoes (Solanum section Petota), have received attention; however, such information has not been analysed in combination with phylogenetic histories, genomic composition and reproductive systems to identify potential species for use in breeding for abiotic stress tolerance. We used a combination of ordinary least-squares (OLS) and phylogenetic generalized least-squares (PGLM) analyses to identify the discrete climate classes that make up the climate niche that wild potato species inhabit in the context of breeding system and ploidy. Self-incompatible diploid or self-compatible polyploid species significantly increase the number of discrete climate classes within a climate niche inhabited. This result was sustained when correcting for phylogenetic non-independence in the linear model. Our results support the idea that specific breeding system and ploidy combinations increase niche breadth through the decoupling of geographical range and niche diversity, and therefore, these species may be of particular interest for crop adaptation to a changing climate.

17.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34586580

RESUMEN

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Asunto(s)
Hemípteros , Nicotiana , Aciltransferasas/metabolismo , Animales , Desecación , Herbivoria , Insectos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Agua
18.
G3 (Bethesda) ; 12(3)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893823

RESUMEN

Plant breeding strategies to optimize metabolite profiles are necessary to develop health-promoting food crops. In oats (Avena sativa L.), seed metabolites are of interest for their antioxidant properties, yet have not been a direct target of selection in breeding. In a diverse oat germplasm panel spanning a century of breeding, we investigated the degree of variation of these specialized metabolites and how it has been molded by selection for other traits, like yield components. We also ask if these patterns of variation persist in modern breeding pools. Integrating genomic, transcriptomic, metabolomic, and phenotypic analyses for three types of seed specialized metabolites-avenanthramides, avenacins, and avenacosides-we found reduced heritable genetic variation in modern germplasm compared with diverse germplasm, in part due to increased seed size associated with more intensive breeding. Specifically, we found that abundance of avenanthramides increases with seed size, but additional variation is attributable to expression of biosynthetic enzymes. In contrast, avenacoside abundance decreases with seed size and plant breeding intensity. In addition, these different specialized metabolites do not share large-effect loci. Overall, we show that increased seed size associated with intensive plant breeding has uneven effects on the oat seed metabolome, but variation also exists independently of seed size to use in plant breeding. This work broadly contributes to our understanding of how plant breeding has influenced plant traits and tradeoffs between traits (like growth and defense) and the genetic bases of these shifts.


Asunto(s)
Avena , Fitomejoramiento , Avena/genética , Avena/metabolismo , Grano Comestible , Metabolómica , Semillas/genética , Semillas/metabolismo
19.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34849806

RESUMEN

Despite being one of the most consumed vegetables in the United States, the elemental profile of sweet corn (Zea mays L.) is limited in its dietary contributions. To address this through genetic improvement, a genome-wide association study was conducted for the concentrations of 15 elements in fresh kernels of a sweet corn association panel. In concordance with mapping results from mature maize kernels, we detected a probable pleiotropic association of zinc and iron concentrations with nicotianamine synthase5 (nas5), which purportedly encodes an enzyme involved in synthesis of the metal chelator nicotianamine. In addition, a pervasive association signal was identified for cadmium concentration within a recombination suppressed region on chromosome 2. The likely causal gene underlying this signal was heavy metal ATPase3 (hma3), whose counterpart in rice, OsHMA3, mediates vacuolar sequestration of cadmium and zinc in roots, whereby regulating zinc homeostasis and cadmium accumulation in grains. In our association panel, hma3 associated with cadmium but not zinc accumulation in fresh kernels. This finding implies that selection for low cadmium will not affect zinc levels in fresh kernels. Although less resolved association signals were detected for boron, nickel, and calcium, all 15 elements were shown to have moderate predictive abilities via whole-genome prediction. Collectively, these results help enhance our genomics-assisted breeding efforts centered on improving the elemental profile of fresh sweet corn kernels.


Asunto(s)
Cadmio , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Verduras , Zea mays/genética , Zinc
20.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618065

RESUMEN

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Asunto(s)
Perfilación de la Expresión Génica , Técnicas Genéticas/instrumentación , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Sorghum/genética , Agua/metabolismo , Rasgos de la Historia de Vida , Fenotipo , Sorghum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...